55 research outputs found

    Massive Milky Way Satellites in Cold and Warm Dark Matter: Dependence on Cosmology

    Full text link
    We investigate the claim that the largest subhaloes in high resolution dissipationless cold dark matter (CDM) simulations of the Milky Way are dynamically inconsistent with observations of its most luminous satellites. We find that the inconsistency is largely attributable to the large values of \sigma_8 and n_s adopted in the discrepant simulations producing satellites that form too early and therefore are too dense. We find the tension between observations and simulations adopting parameters consistent with WMAP9 is greatly diminished making the satellites a sensitive test of CDM. We find the Via Lactea II halo to be atypical for haloes in a WMAP3 cosmology, a discrepancy that we attribute to its earlier formation epoch than the mean for its mass. We also explore warm dark matter (WDM) cosmologies for 1--4 keV thermal relics. In 1 keV cosmologies subhaloes have circular velocities at kpc scales ~ 60% lower than their CDM counterparts, but are reduced by only 10% in 4 keV cosmologies. Since relic masses < 2-3 keV are ruled out by constraints from the number of Milky Way satellites and Lyman-\alpha\ forest, WDM has a minor effect in reducing the densities of massive satellites. Given the uncertainties on the mass and formation epoch of the Milky Way, the need for reducing the satellite densities with baryonic effects or WDM is alleviated.Comment: 11 pages, 7 figures, submitted to MNRA

    High-J CO SLEDs in nearby infrared bright galaxies observed by Herschel-PACS

    Get PDF
    We report the detection of far-infrared (FIR) CO rotational emission from nearby active galactic nuclei (AGN) and starburst galaxies, as well as several merging systems and Ultra-Luminous Infrared Galaxies (ULIRGs). Using Herschel-PACS, we have detected transitions in the Jupp_{upp} = 14 - 20 range (λ\lambda \sim 130 - 185 μ\mum, ν\nu \sim 1612 - 2300 GHz) with upper limits on (and in two cases, detections of) CO line fluxes up to Jupp_{upp} = 30. The PACS CO data obtained here provide the first well-sampled FIR extragalactic CO SLEDs for this range, and will be an essential reference for future high redshift studies. We find a large range in the overall SLED shape, even amongst galaxies of similar type, demonstrating the uncertainties in relying solely on high-J CO diagnostics to characterize the excitation source of a galaxy. Combining our data with low-J line intensities taken from the literature, we present a CO ratio-ratio diagram and discuss its potential diagnostic value in distinguishing excitation sources and physical properties of the molecular gas. The position of a galaxy on such a diagram is less a signature of its excitation mechanism, than an indicator of the presence (or absence) of warm, dense molecular gas. We then quantitatively analyze the CO emission from a subset of the detected sources with Large Velocity Gradient (LVG) radiative transfer models to fit the CO SLEDs. Using both single-component and two-component LVG models to fit the kinetic temperature, velocity gradient, number density and column density of the gas, we derive the molecular gas mass and the corresponding CO-to-H2_2 conversion factor, αCO\alpha_{CO}, for each respective source. For the ULIRGs we find α\alpha values in the canonical range 0.4 - 5 M_\odot/(K kms1^{-1}pc2^2), while for the other objects, α\alpha varies between 0.2 and 14.} Finally, we compare our best-fit LVG model ..Comment: 39 pages, 3 figures; Accepted to Ap

    Radio Spectra of Luminous, Heavily Obscured WISE-NVSS Selected Quasars

    Full text link
    We present radio spectra spanning 0.1100.1 - 10 GHz for the sample of heavily obscured luminous quasars with extremely red mid-infrared-optical colors and compact radio emission. The spectra are constructed from targeted 10 GHz observations and archival radio survey data, which together yield 6116-11 flux density measurements for each object. Our suite of Python tools for modeling the radio spectra is publicly available on Github. Our primary result is that most (61%) of the sample have peaked or curved radio spectra and many (36%) could be classified as Gigahertz Peaked Spectrum (GPS) sources. This indicates compact emission regions likely arising from recently triggered radio jets. Assuming synchrotron self-absorption (SSA) generates the peaks, we infer compact source sizes (31003 - 100 pc) with strong magnetic fields (61006 - 100 mG) and young ages (3010430 - 10^4 years). Conversely, free-free absorption (FFA) could also create peaks due to the high column densities associated with the deeply embedded nature of the sample. However, we find no correlations between the existence or frequency of the peaks and any parameters of the MIR emission. The high-frequency spectral indices are steep (α1\alpha \approx -1) and correlate, weakly, with the ratio of MIR photon energy density to magnetic energy density, suggesting that the spectral steepening could arise from inverse Compton scattering off the intense MIR photon field. This study provides a foundation for combining multi-frequency and mixed-resolution radio survey data for understanding the impact of young radio jets on the ISM and star formation rates of their host galaxies.Comment: 48 pages, 17 figures, published in Astrophysical Journa

    Surveying the Dynamic Radio Sky with the Long Wavelength Demonstrator Array

    Full text link
    This paper presents a search for radio transients at a frequency of 73.8 MHz (4 m wavelength) using the all-sky imaging capabilities of the Long Wavelength Demonstrator Array (LWDA). The LWDA was a 16-dipole phased array telescope, located on the site of the Very Large Array in New Mexico. The field of view of the individual dipoles was essentially the entire sky, and the number of dipoles was sufficiently small that a simple software correlator could be used to make all-sky images. From 2006 October to 2007 February, we conducted an all-sky transient search program, acquiring a total of 106 hr of data; the time sampling varied, being 5 minutes at the start of the program and improving to 2 minutes by the end of the program. We were able to detect solar flares, and in a special-purpose mode, radio reflections from ionized meteor trails during the 2006 Leonid meteor shower. We detected no transients originating outside of the solar system above a flux density limit of 500 Jy, equivalent to a limit of no more than about 10^{-2} events/yr/deg^2, having a pulse energy density >~ 1.5 x 10^{-20} J/m^2/Hz at 73.8 MHz for pulse widths of about 300 s. This event rate is comparable to that determined from previous all-sky transient searches, but at a lower frequency than most previous all-sky searches. We believe that the LWDA illustrates how an all-sky imaging mode could be a useful operational model for low-frequency instruments such as the Low Frequency Array, the Long Wavelength Array station, the low-frequency component of the Square Kilometre Array, and potentially the Lunar Radio Array.Comment: 20 pages; accepted for publication in A

    Constraining warm dark matter with cosmic shear power spectra

    Full text link
    We investigate potential constraints from cosmic shear on the dark matter particle mass, assuming all dark matter is made up of light thermal relic particles. Given the theoretical uncertainties involved in making cosmological predictions in such warm dark matter scenarios we use analytical fits to linear warm dark matter power spectra and compare (i) the halo model using a mass function evaluated from these linear power spectra and (ii) an analytical fit to the non-linear evolution of the linear power spectra. We optimistically ignore the competing effect of baryons for this work. We find approach (ii) to be conservative compared to approach (i). We evaluate cosmological constraints using these methods, marginalising over four other cosmological parameters. Using the more conservative method we find that a Euclid-like weak lensing survey together with constraints from the Planck cosmic microwave background mission primary anisotropies could achieve a lower limit on the particle mass of 2.5 keV.Comment: 26 pages, 9 figures, minor changes to match the version accepted for publication in JCA

    Nonlinear Evolution of Cosmological Structures in Warm Dark Matter Models

    Get PDF
    The dark energy dominated warm dark matter (WDM) model is a promising alternative cosmological scenario. We explore large-scale structure formation in this paradigm. We do this in two different ways: with the halo model approach and with the help of an ensemble of high resolution N-body simulations. Combining these quasi-independent approaches, leads to a physical understanding of the important processes which shape the formation of structures. We take a detailed look at the halo mass function, the concentrations and the linear halo bias of WDM. In all cases we find interesting deviations with respect to CDM. In particular, the concentration-mass relation displays a turnover for group scale dark matter haloes, for the case of WDM particles with masses of the order ~0.25 keV. This may be interpreted as a hint for top-down structure formation on small scales. We implement our results into the halo model and find much better agreement with simulations. On small scales the WDM halo model now performs as well as its CDM counterpart.Comment: accepted for publication in MNRA
    corecore